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ABSTRACT
Cyst formation in conditions associated with in-
creased renal ammoniagenesis (hypokalemia, distal
renal tubular acidosis, renal mass reduction) and
experimental links between increased ammoniagen-
esis and interstitial inflammation have suggested a
role for ammonia in the pathogenesis of polycystic
kidney disease (PKD). To explore this hypothesis, Han:
SPRD rats, a PKD model that affects male more se-
verely than female animals, have been used. Het-
erozygous cystic (Cy/+) and homozygous normal
(+/+) male and female offspring of Cy/+ rats were
divided at 3 wk of age Into control groups drinking
water and experimental groups drinking 300 mM
NH4CI, 300 mM KHCO3, 200 mM KHCO3, 200 mM KCI,
200 mM NaHCO3, or 200 mM NaCI. At 2 months of
age, the rats were kept fasting from 8:00 p.m. to 8:00
a.m. In metabolic cages and urine samples were
collected under mineral oil. The rats were then
weighed and anesthetized for the collection of blood
and kidneys. The administration of 300 mM NH4CI,
and to a lesser extent that of 200 mM NaCI, was
accompanied by an increase in the urinary excretion
of ammonia and aggravation of the renal cystic
disease. On the other hand, the administration of 300
mM KHCO3, 200 mM KHCO3, or 200 mM NaHCO3
lowered the urinary excretion of ammonia and mark-
edly reduced the severity of the cystic disease and
interstitial inflammation. The administration of 300 mM

KHCO3, and to a lesser extent that of 200 mM KHCO3,
resulted in the precipitation of calcium phosphate in
the medullary collecting ducts. These observations
are consistent with the hypothesis that renal ammoni-
agenesis or the metabolic processes linked to It play
a role In the pathogenesis of PKD and demonstrate a
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protective effect of alkali administration on the devel-
opment of cystic disease In Han:SPRD rats.
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P olycystic kidney disease has a complex pathogen-

esis that includes abnormalities in the prolifena-

tion of the tubular epithelial cells, fluid secretion, and
remodeling of the extracellular matrix ( 1-6). The pos-

sibifity that ammonia is involved in the pathogenesis

of polycystic kidney disease was suggested (7) after
the observation of an association between chronic

hypokalemia and acquired renal cysts (8,9). Acquired

renal cysts have also been observed in chronic renal

failure, both clinically (10-12) and experimentally

( 1 3), and in patients with distal renal tubular acidosis

( 14, 15). Increased renal ammoniagenesis, either in

absolute terms on relative to the number of surviving

nephrons ( 16-18), is common to these conditions.
Abnormalities in the urinary excretion of ammonia

have been described in autosomal dominant polycys-

tic kidney disease (ADPKD) ( 19,20). To investigate a

possible link between alterations in renal ammoni-

agenesis and the development of renal cystic disease,

we have used Han:SPRD rats, a recently characterized

model of ADPKD (21.22).

METHODS

Experimental Animals

Han:SPRD rats were obtained from the polycystic kidney
program at the University of Kansas Medical Center. The
animals used in this study were the offspring from hetenozy-
gous rats. The rats with homozygous disease (Cy/Cy) were
recognized at 1 wk of age by the marked renal enlargement,
died of uremia at 3 to 4 wk of age, and were not used in this
study. The remaining homozygous normal (+ I +) and het-
erozygous diseased (Cy/ +) animals were divided into differ-
ent experimental groups designed to alter ammonia produc-
tion or to control for the administration of sodium on
potassium. The severity of the cystic disease differs in male
and female Cy/ + rats. Impairment of renal function is
noticeable by 8 wk of age in male Cy/ + rats, whereas female
Cy/ + rats have a milder disease (22).

Experimental Groups

At 3 wk of age, Cy/ + and + I + Han:SPRD rats were
randomly divided into control groups drinking water and
experimental groups drinking 300 mM NH4C1, 300 mM
KHCO3, 200 mM KHCO3, 200 mM NaHCO3, 200 mM KC1, or
200 mM NaCl. Only female rats. which have milder renal
cystic disease. received 300 mM NH4C1, and only male rats.

which have more severe renal cystic disease. were given 300
mM KHCO3. All rats were fed a standard rodent diet contain-
ing 23% protein (Purina Mills Inc. , Richmond, IN).
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Experimental Protocol

At 2 months ofage, the rats were placed in metabolic cages
and kept fasting from 8 p.m. to 8 a.m. for the collection of
urine under mineral oil. After the completion of the 12-h
urine collection, the rats were weighed and anesthetized with
mactin (Promonta, Hamburg, Germany), 100 mg/kg body wt
ip. Heparmnized blood samples were obtained by cardiac
puncture, the abdomen was opened, and the kidneys were
removed, placed in preweighed containers with 4%
paraformaldehyde, weighed, fixed overnight at 4#{176}C,and em-
bedded in paraffin for histologic studies.

Laboratory Methods and Morphologic Analysis

Plasma and urine creatinine concentrations were mea-
sured by an adaptation of the Jaffe reaction to an automatic
chemical analyzer (23). Urinary ammonia was measured by

the Berthelot method (24). Four-micrometer transverse tis-
sue sections including cortex, medulla, and papilla were
stained with hematoxylin and eosin and von Kossa stains
(25). These sections were graded without knowledge of group
assignment as to the extent of the cystic changes (0, absence
of cysts: 1 , 2, 3, and 4, cysts in <20%. 20 to 40%, 40 to 60%
and >60% of renal cortex. respectively) and to the extent and
severity of the interstitial infiltration by inflammatory cells

(0, absence of inifitnates; 1 , focal, mild; 2, focal, moderate; 3,
diffuse, mild; 4, diffuse, moderate or severe).

Statistical Analysis

Comparisons of the means between control and expeni-
mental groups were made by use of the t test. All P values
reported are two tailed, and the conventional cutoff of 0.05
was taken to reflect statistical significance.

RESULTS

The weights, concentrations of plasma bicarbonate,

urinary excretions of ammonia, and creatinine clear-

ances of the male and female Cy/ + control and expen-

imental rats are summarized in Table 1 . Male Cy/ +

rats drinking 300 on 200 mM KHCO3 and female Cy/ +

rats drinking 300 mM NH4C1 on 200 mM NaC1 had

retarded growth as compared with the control ani-

mals. Plasma bicarbonate concentrations were signif-

icantly lower in the groups drinking 300 mM NH4C1 on

200 mM NaC1 and in female rats given 200 mM KC1

and were significantly higher in the male rats drinking

KHCO3 or NaHCO3 and in the female animals given

NaHCO3. Urinary excretions of ammonia were mark-

edly increased in the rats drinking NH4C1 and to a

lesser extent in those drinking NaCl and were signifi-

candy reduced in the groups treated with KHCO3 on

NaHCO3. No significant changes in the urinary excne-

tion of ammonia were detected in the groups receiving
200 mM KC1. Creatinine clearances were significantly

reduced in the 300 mM NH4C1 group. No significant

differences in creatinine clearance were detected be-

tween the control and the remaining experimental

groups.

Because of the small number of + / + rats (22 male

and 1 9 female animals divided in 2 control and 10

experimental groups), comparisons between individ-

ual Cy/ + and + / + groups were limited (results not

shown). The weights of Cy/ + rats receiving 300 mM

KHCO3, 200 mM KHCO3, or 300 mM NH4C1 were

significantly lower than those of + / + rats. The con-

centrations of plasma bicarbonate of male control and

female NH4C1 Cy/ + rats were significantly lower than

those of + / + rats. No significant differences in the

urinary excretion of ammonia were detected between

Cy/ + and + / + rats. Creatinine clearances of male
Cy/ + rats in the control and 200 mM NaCl groups and

of female Cy/ + rats in the 300 mM NH4C1 group were

significantly reduced as compared with those of + / +

rats.

TABLE 1 . Characteristics of male and female Cy/+ Han:SPRD rats in the control and experimental groupsa

Rat N Weight (g)
Plasma Bicarbonate

(mEq/L)

Urine NH4
(i.�mol/h per

100 9 body wt)

Creatinine
Clearance

(mL/min per
100 g body wt)

Male
Control 5 237 ± 39 21.3 ± 0.5 9.7 ± 2.3 0.87 ± 0.31
KHCO3 (300 mM) 7 156 ± 22b 24.5 ± 1 7b 4�5 ± 1 5b 1.25 ± 0.31
KHCO3 (200 mM) 5 191 ± 21b 23.7 ± 06b 5.2 ± 07b �9 ± 0.14
NaHCO3 (200 mM) 5 263 ± 13 25.5 ± 33b 5.0 ± 08b .25 ± 0.20
KCI (200 mM) 8 229 ± 25 21.4 ± 1.2 12.9 ± 2.6 1.01 ± 0.16

NaCI (200 mM) 4 242 ± 11 19.4 ± 06b 16.7 ± 27b 0.90 ± 0.26
Female

Control 5 189±9 23.5±2.0 15.4±2.0 1.16±0.22
NH4CI (300 mM) 5 104 ± 38b 17.7 ± 43b 83.7 ± 446b 0.50 ± 022b

KHCO3 (200 mM) 5 168 ± 20 23.8 ± 1.6 3.4 ± 1.lb 1.00 ± 0.08
NaHCO3 (200 mM) 4 192 ± 20 27.9 ± 2.9’� 6.0 ± 06b .26 ± 0.08
KCI (200 mM) 5 182 ± 6 20.9 ± lOb 15.2 ± 3.8 1.03 ± 0.29
NaCI (200 mM) 6 167 ± 8b 20.4 ± 19b 27.2 ± 72b 0.80 ± 0.33

a Values are mean ± SD.
b p < 0.05 as compared with control.
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The relative kidney weights and histologic scones of

male and female Cy/ + are shown in Table 2. Males
had significantly higher relative kidney weights than

did females. The administration of 300 mM NH4C1 to

female Cy/ + rats resulted in marked renal enlarge-

ment. The administration of 200 mM NaC1 to male and

female Cy/ + rats caused renal enlargement of a lesser

degree than that observed after the administration of

300 mM NH4C1. On the other hand, the administra-

tion of300 mM KHCO3, 200 mM KHCO3, and 200 mM
NaHCO3 consistently resulted in a marked reduction

in the size of the kidneys. The administration of 200

mM KC1 had no significant effect. For the purpose of
comparison, the relative kidney weights of male and

female + / + rats in the control group were 0.8 1 ± 0.02

and 0.78 ± 0.04 g/ 100 g body wt. The administration

of 300 mM NH4C1 to female + / + rats and of 300 mM

KHCO3 to male + / + rats was accompanied by a slight

increase in relative kidney weight (results not shown).

Macroscopic and microscopic examinations of the

kidneys confirmed the marked aggravation of renal

cystic disease caused by the administration of 300

mM NH4C1 (Figures 1 to 3; Table 2) and to a lesser

extent by the administration of 200 mM NaC1, as well

as the striking protective effect afforded by the admin-

istration of 200 on 300 mM KHCO3 on 200 mM

NaHCO3 (Figures 4 to 6; Table 2). The administration

of KHCO3 or NaHCO3 was accompanied by a marked

reduction not only in the number of cysts. but also in

the density of cellular infiltrates in the interstitium

(Figure 6). The administration of 300 mM KHCO3 was

accompanied by the intraluminal deposition of cal-
cium phosphate in the medulla, which was more

marked in Cy/ + rats than in + / + rats (Figure 7). The

intraluminal precipitation of calcium phosphate was

less prominent in the rats drinking 200 mM KHCO3

and was not observed in the animals receiving 200
mM NaHCO3.

Figure 1 . Representative transverse sections of kidneys from
female Cy/+ Han:SPRD rats from the control group (A) or
from the group drinking 300 mM NH4CI (B). Note the marked
aggravation of the renal cystic disease observed In the rat
drinking 300 mM NH4CI.

DISCUSSION

This study clearly shows that the development of

inherited renal cystic disease can be markedly altered

by environmental or dietary factors. Although the rats

were not pair fed, the observations of this study

cannot be explained by different caloric on protein

intakes. Interventions causing similar degrees of

growth retardation had opposite effects on the devel-

opment of renal cystic disease, whereas consistent

results were obtained by interventions that did not

cause any growth retardation. Dietary changes ac-

companied by reduced urinary excretions of ammonia
markedly attenuated the development of renal cystic

disease, whereas those accompanied by increased
urinary excretions ofammonia had the opposite effect.
Thus, this study also supports the hypothesis that the
ammonia on metabolic processes linked to renal am-
moniagenesis may play a role in the pathogenesis of

TABLE 2. Relative kidney weights and histologic scores of male and female Cy/+ Han:SPRD rats in the control
and experimental groupsa

Rat N
Kidney/Body

Wt x 100
Cystic

Dilation
Interstitial

Inflammation

Male

Control 5 2.10 ± 0.27 2.80 ± 0.45 2.80 ± 0.45
KHCO3 (300 mM) 7 1.48 ± 023b 1.43 ± 053b 0.86 ± 038b

KHCO3 (200 mM) 5 1.19 ± 0.12b 1.20 ± 0.45” 1.20 ± 0.45b
NaHCO3 (200 mM) 5 1.20 ± 0. 10b .40 ± 055b 1.20 ± 0.45b
KCI (200 mM) 8 1.95 ± 0.16 2.63 ± 0.52 2.38 ± 0.74
NaCl (200 mM) 4 2.95 ± 013b 3.25 ± 0.29 2.88 ± 0.25

Female
Control 5 1.39 ± 0.11 1.80 ± 0.45 1.20 ± 0.45
NH4CI (300 mM) 5 2.81 ± 051b 3.40 ± 055b 2.10 ± 022b

KHCO3 (200 mM) 5 1.13 ± 0.07b 1.10 ± 0.22b 0.80 ± 0.27
NaHCO3 (200 mM) 4 1.13 ± 0.07b 1.10 ± 0.22b 0.80 ± 0.45
KCI (200 mM) 5 1.50 ± 0.07 1.80 ± 0.45 1.20 ± 0.45
NaCI (200 mM) 6 2.20 ± 0.3l�’ 2.50 ± 045b 1.83 ± 041b

a Values are mean � SD.
b p < 0.05 as compared with control.
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Figure 2. Four-mIcrometer kidney sections from female Cy/+
Han:SPRD rats from the control group (A) or from the group
drinking 300 mM NH4CI (B). Note the extensive cystic disease
In the rat drinking 300 mM NH4CI. Hematoxylin and eosin,
x100.

polycystic kidney disease. Consistent with these ne-

sults are the observations by Cowley et at. of worse
renal cystic disease in Han:SPRD Cy/ + rats fed NH4C1
on a potassium-deficient diet (26).

The use ofalkali in the treatment ofnenal diseases is

not new. It was recommended by Richard Bright, and

it was an accepted therapy for many years (27). A

number of experimental animal studies at the turn of

the century claimed that the administration of alkali
could partially prevent the nephnotoxic effects of cer-
tain anesthetics (28) or metallic compounds such as

uranium nitrate (29,30). In a prospective study of

patients with scarlet fever, it was found that the

prophylactic administration of large amounts of so-
dium bicarbonate and potassium citrate reduced the
frequency of scarlatinal nephnitis (31). The protective
effect of alkali administration has been confirmed

many years later in a number of renal conditions

Figure 3. Four-micrometer kidney sections from female Cy/+
Han:SPRD rats from the control group (A) or from the group
drinking 300 mM NH4CI (B). Note the presence of Inflamma-
tory cell infiltrates in the rat drinking 300 mM NH4CI. Hema-
toxylin and eosln, x200.

including subtotal nephrectomy (32) and hypokalemic

nephropathy (33). The results of our study indicate

that the autosomal dominant model of renal cystic
disease in Han:SPRD rats is also markedly susceptible
to changes in acid base balance and that pathologic
changes can be markedly attenuated by the adminis-
tnation of alkali.

Insufficient understanding of the mechanisms by
which changes in acid base metabolism could affect
the development of renal disease has likely inhibited

the interest of clinicians in this potential form of

therapy. Common to many renal diseases, including
those where the administration of alkali has been

shown to be protective, as well as many renal cystic
diseases, is the presence of interstitial cellular infil-

trates and fibrosis. Because free base ammonia can
activate complement by disrupting a reactive internal
thioesten bond within the alpha subunit of the third
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C
Figure 4. Representative transverse sections of kidneys from male �yi + Han:SF’RL) rats from the control group (A), from the group
drinking 200 mM NaHCO3 (B), or from the group drinking 200 mM KHCO3 (C). Note that the severity of the cystic disease is much
less in the rats drinking 200 mM NaHCO3 or 200 mM KHCO3.

component of complement (34). it has been proposed

that the enhanced cortical production of ammonia
associated with renal mass reduction (32), chronic

hypokalemia (33), and the dietary deficiency of anti-

oxidants (35) may be responsible for the development

of interstitial inflammation and fibrosis in these con-
ditions. A similar mechanism may be operative in

polycystic kidney disease because patients with this

disease may have a defect in the tnansfen of ammonia

to the final urine (20) analogous to that observed after

subtotal nephrectomy (36).

The results of our study indicate that the adminis-

tration of acids and alkalis has a marked effect not

only on the development of interstitial inflammation,
but also on cyst formation. Alkali administration was

previously found to reduce cystic tubular dilation in

chronic hypokalemic nephropathy and after subtotal

nephnectomy (32,33). The enhanced renal production

of ammonia could be linked to cyst formation by a
number of mechanisms. The local generation of auta-

coids, cytokines, and growth factors as a result of the

ammonia-induced complement activation and inflam-

mation in the renal interstitium may contribute to

abnormal growth and/on fluid secretion by the tubu-

lar epithelium. In nonrenal cells, ammonia can stim-
ulate DNA (37), RNA, and protein synthesis (37,38)

and decrease the rate of protein (39-4 1 ) and glyco-

saminoglycan (42,43) degradation. In rabbit proximal

tubular cells, ammonia results in an increase in RNA

and protein content, stimulation of protein synthesis,
and inhibition of protein degradation, without change
in DNA synthesis (44,45). Finally, metabolic factors
linked to renal ammoniagenesis, rather than to am-

monia per Se, may be important. Glutamine oxidation

by the mitochondnial phosphate-dependent glutami-

nase pathway is an important source of ATP in the

proximal tubular epithelial cells (46,47). Extracellular

AlP is a mitogen for a number of mammalian cells

(48-52), and mitochondnial drugs that deplete the ATP
content can result in growth inhibition and cell differ-
entiation (53,54). The addition of exogenous adenine

nucleotides to isolated rabbit kidney tubules enriched

in proximal segments increases the cell content of AlP

(55), and the mitogenic effect of adenine nucleotides
on proximal tubular epithelial cells greatly exceeds

that of other growth-promoting agents (56,57). We

have also found that AlP has a strong mitogenic effect
on cyst-derived epithelial cell cultures (V.E. Tomes,

D.K. Mujwid, unpublished observation).
It is uncertain to what extent the observations in

this study are relevant to human renal cystic disease.

Nevertheless, certain observations are consistent with

a role for renal ammoniagenesis or a metabolic pro-

cess linked to renal ammoniagenesis in the pathogen-

esis of acquired renal cystic disease and ADPKD.

Studies in animal models with reduced renal mass

and in humans with chronic renal disease have shown

that, although the absolute excretion of ammonia is

reduced, the excretion ofammonia pen nephnon unit is

increased ( 16-18). In the remnant kidney model, a
defective trapping in the renal medulla causes a me-

duction in the urinary excretion of ammonia, despite

an enhanced production and concentration in the

renal cortex (36). It seems likely that the high produc-
tion and concentration of ammonia also occur in the
surviving nephrons of dialysis patients because stand-
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Figure 5. Four-micrometer kidney sections from male Cy/+
Han:SPRD rats from the control group (A), from the group
drinking 200 mM NaHCO3 (B), or from the group drinking 200
mM KHCO3 (C). Note that the severity of the cystic disease is
much less in the rats drinking 200 mM NaHCO3 or 200 mM
KHCO3. Hematoxylin and eosin, x100.

�gure o. Four-micrometer kidney sections from male Cy/+
Han:SPRD rats from the control group (A), from the group
drinking 200 mM NaHCO3 (B). or from the group drinking 200
mM KHCO3 (C). Note that the severity of the inflammatory
cell infiltratesis much less in the rats drinking 200 mM

NaHCO3 or 200 mM KHCO3.
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Figure 7. Four-mIcrometer tissue section from a male Cy/+
Han:SPRD rat drinking 300 mM KHCO3. Note the mild renal
cystic disease and the presence of extensive precipitation of
calcium phosphate In the medullary collecting ducts. von
Kossa, x25.

ard bicarbonate and acetate dialysates do not com-

pletely correct uremic acidosis (58). In ADPKD, the

disruption of the normal corticomedullary vascular-
tubular architecture by cysts is likely responsible for

the renal concentration defect that is the earliest

functional abnormality in this disease (59). ADPKD

patients with normal GFR cannot transfer ammonia

normally to the urine, likely also because of the loss of

the conticomedullary concentration gradient (20). To

compensate for this transport defect, the cortical pro-

duction of ammonia may be increased in ADPKD

patients at an earlier stage of renal insufficiency and
contribute to the progression of the disease.

Note added in proof: Additional experiments have
been performed to determine the effects of lower con-
centrations of NaHCO3. The administration of 75,
150, and 200 mM NaHCO3 significantly reduced the
increase in renal size of cystic over that of nonaffected
rats by 43, 62, and 70%, respectively.
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